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Simulation study — coverage of the 99.9% quantile

In this section, we look at the in-sample and out-of-sample coverages of the Monte Carlo
99.9% quantile estimates.

In-sample coverage

We first look at the in-sample coverage. To do so, for each sample of the Monte Carlo
simulations presented in Section 3 of the paper, we use the estimated parameters and the
decoded states (obtained with the Viterbi algorithm) to generate 100,000 realizations of
the total loss (obtained by convolution of the frequency and severity realizations) at each
point in time. The empirical 99.9% quantile of these realizations gives our final estimate.
Then, we count the observed losses that are larger than their respective estimated quantile.
Using estimated parameters θ̂ and a given sample {lt}t=1,...,T , we are interested in

p = T−1

T∑
t=1

1(Q̂0.999(Lt; Θ̂) < lt), (1)

where T is the size of the time series, 1(·) is an indicator function taking value one when
the condition in parentheses is met, zero otherwise, and Q̂0.999(Lt; θ̂) is the Monte Carlo
estimate of the 99.9% quantile of the total loss, obtained with estimated parameters Θ̂.
We call this quantity the proportion of exceedances, which corresponds to one minus the
coverage probability [see Christoffersen, 1998, for additional theoretical explanations]. A
similar calculation is performed using the true model and the true states, to obtain Monte
Carlo estimates of the proportion of exceedances (i.e. replacing Θ̂ by Θ). In that case, the
proportion of exceedances is denoted p0. Taking the average of the proportions computed
over the B samples of the Monte Carlo simulations, we obtain our final estimates, p̄ and
p̄0. Table 1 gives the obtained results for the different values of the parameters used in
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the simulation study. We expect values close to 0.1%. In addition, we also compute the
proportion of samples where we observe at least once a total loss larger than its estimated
quantile. These proportions are denoted ψ and ψ0 for the estimated model and the true
model, respectively. They can be used as critical values, for a given sample size, to assess
the correct specification of a MS-GAMLSS model.

Regarding the DGP with a constant γ, our results show proportions of exceedances not
far from the expected 0.1%, both with the true model and the estimated model. The short
length of the time series, however, is the source of an important variability. Results seem a
bit better with T = 100 and when βλ,0 increases (except for xλt = xσt and T = 100). Worst
results are obtained when the number of events per time period is the lowest (i.e. when
βλ,0 = 2). The proportion of samples with at least one total loss larger than the estimated
quantile varies between 2% and 8.5% for T = 50, and between 6% and 11.5% for T = 100.
Regarding the results with γ depending on covariates, we also observe acceptable rates.
Worst results are obtained for T = 50 and xλt = xσt = xγt . For that case, we overestimate the
quantile (we observe no rejections). The high collinearity between explanatory variables
can explain some of these observations. Besides, in the other cases, we are close to the
expected proportion of 0.1%.

Lastly, we perform the same exercise using the model estimated on UniCredit data.
Using the covariates’ value of the original time series and the estimated parameters, we
generate 1000 (parametric) bootstrap time series of the state, the frequency and the severity
processes. Then, we re-estimate the parameters and use the Viterbi algorithm to decode the
states. These quantities are used to compute Monte Carlo estimates of the 99.9% quantile
and the related proportions of exceedances. We observe a proportion of exceedances close
to 0.1% and a low proportion of samples with at least one breach (see Table 2). These
results suggest that on such a short time series, it is quite unlikely to observe breaches and
that these events should be considered as indicators of a potential misspecification.
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T = 50 xλt = xσt xλt 6= xσt

βλ,0 2 3 4 4∗ 2 3 4 4∗

p̄ 0.04 0.05 0.13 0.00 0.08 0.05 0.08 0.02
p̄0 0.09 0.08 0.13 0.11 0.17 0.1 0.1 0.13
ψ 2.0 2.5 6.5 0.0 4.0 2.5 4.0 1.0
ψ0 4.5 4.0 6.5 5.5 8.5 5.0 5.0 6.5

T = 100 xλt = xσt xλt 6= xσt

βλ,0 2 3 4 4∗ 2 3 4 4∗

p̄ 0.065 0.08 0.065 0.02 0.085 0.09 0.11 0.13
p̄0 0.08 0.08 0.065 0.09 0.12 0.09 0.12 0.07
ψ 6.5 8.0 6.0 2.0 8.5 9.0 10.5 11.0
ψ0 7.0 7.5 6.5 8.5 11.5 8.5 11.0 7.0

Table 1: In-sample proportions of exceedances (in %) obtained with the estimated model
(p̄) and the true model (p̄0). Data are the ones of the simulation study. ψ and ψ0 give the
proportion of samples with at least one observed loss larger than its Monte Carlo estimate
of the 99.9% quantile.

BS p̄ p̃ p̄0 p̃0 ψ ψ0 R̄ R̃

T = 38 0.05 0 0.07 0 1.9 2.5 94.4 97.4

Table 2: Bootstrap in-sample proportions of exceedances (in %). Data have been generated
using the model estimated on the UniCredit data. The number of resamples is B = 1000.
p̄ (resp. p̃) and p̄0 (resp. p̃0) denote mean (resp. median) estimates over the resamples,
obtained with the estimated model and the true model. R̄ and R̃ denote mean and median
proportions of correctly classified decoded states, respectively.

Out-of-sample coverage

Here, we look at out-of-sample proportions of exceedances. It allows to assess the correct-
ness of the quantile estimates, when we also have to predict the state. We use one-step
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ahead predictions of the state probabilities, obtained by

α̂T+1 = (α̂T/α̂T1)Γ̂

where 1 is a vector of ones, α̂T is the estimated forward probability at time T and Γ̂ is the
estimated transition matrix [Zucchini et al., 2016]. With this formula, we obtain easily our
predicted state probabilities at time T + 1. Then, replacing T by T + 1 (but keeping the
same estimates of Γ), we are able to repeat this prediction for T+2, T+3, . . . , T+H. Here,
we choose H = 1000 and extend the first 100 simulated samples generated in our simulation
study with 1000 new observations. Then, the same operations as in the in-sample case are
executed: using the predicted states and the estimated parameters, we generate 100,000
values of the total loss and use the 99.9% empirical quantile as an estimate. This operation
is repeated for the H additional points in the sample, as well as with the true parameters
and the true states. We only consider the second data generating process of the simulation,
where xλt 6= xσt .

Results are displayed in Table 3. For the true model, we are very close to 0.1%. Now,
the length of the time series is sufficient to reduce the variability of the (true) proportion of
exceedances. Regarding the proportion of exceedances obtained with the estimated model,
we observe values way higher than 0.1%. For small samples (i.e. T = 50 and βλ,0 < 4),
we observe mean values higher than 5%. However, when the sample size increases, the
proportion of exceedances decreases and becomes closer to 0.1%. We suspect that bad
out-of-sample proportion of exceedances could be mainly due to bad estimates of the tpm,
resulting in bad state prediction. To investigate this conjecture, we first compute the
average and median out-of-sample correct classification rates (column R̄ and R̃ in Table
3). We see that low rates are associated with proportion of exceedances far from 0.1%.
Especially, in the small sample case, the classification rates are very bad (around 65%),
explaining the bad coverage. Computing the correlation coefficient between the absolute
estimation error of the tpm’ diagonal elements and this rate, we find values between -0.13
and -0.81. It could indicate that small errors on the tpm tend to have big consequences on
the classification rate, thus on the proportion of exceedances. A way of improving the out-
of-sample coverage would be therefore to estimate the parameters of the model on samples
with a large number of events per time period. Results with γ depending on covariates are
similar. For βλ,0 = 4, we observe bigger proportions of exceedances with T = 50 and 100,
compared to results with a constant γ. These results emphasize that when we increase the
complexity of the dimension structure, a larger number of observations per time period
is needed to achieve a quality of the prediction that is similar to the one of less complex
models. Regarding the classification rate, though, few differences are observed.
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T = 50 xλt 6= xσt

βλ,0 p̄ p̃ p̄0 p̃0 R̄ R̃ ρ

2 23.7 20.7 0.093 0.1 56.1 56.4 -0.18
3 8.6 6.7 0.1 0.1 65.2 65.9 -0.50
4 1.3 0.9 0.12 0.1 91.6 92.5 -0.81
4* 7.8 5.7 0.09 0.1 87.7 93.5 -0.73

T = 100 xλt 6= xσt

βλ,0 p̄ p̃ p̄0 p̃0 R̄ R̃ ρ

2 19.4 17.55 0.1 0.1 57.9 57.5 -0.24
3 7.6 7.0 0.10 0.1 67.4 66.9 -0.13
4 0.8 0.7 0.11 0.1 93.1 93.6 -0.47
4* 5.6 4.7 0.11 0.1 0.919 94.15 -0.86

Table 3: Out-of-sample mean and median proportions of exceedances (in %) obtained with
the estimated model and the true model. R̄ and R̃ give the mean and median proportions
of correctly predicted states, respectively. ρ is the (Pearson) correlation coefficient between
the correct classification rate and the total absolute error on the diagonal elements of the
tpm.

Simulation study — additional Monte Carlo bands

Scenario 1
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Figure 1: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 50 and βλ,0 = 2. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 2: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 50 and βλ,0 = 3. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 3: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 50 and βλ,0 = 4. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 4: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 100 and βλ,0 = 2. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 5: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 100 and βλ,0 = 3. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 6: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 100 and βλ,0 = 4. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 7: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 50 and βλ,0 = 2. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 8: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 50 and βλ,0 = 3. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 9: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 50 and βλ,0 = 4. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 10: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 100 and βλ,0 = 2. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 11: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 100 and βλ,0 = 3. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).
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Figure 12: 95% coverage bands (dashed) for λ(j)(xλt ) (top) and σ(j)(xσt ) (bottom) when
T = 100 and βλ,0 = 4. Dashed dotted (resp. solid): true function for j = 1 (resp. j = 2).

Remark: for the bootstrap confidence intervals (not displayed here), we use the initial time
series of covariates for all bootstrap samples. However, the states as well as the bootstrap
sample of the response variable have been drawn from the estimated model. This explains
the large variability observed.

Empirical analysis: additional results

In this section, we provide the results obtained from fitting a MS-GAMLSS model where
the VIX has been replaced by the VSTOXX on the same period. Indeed, as pointed out
by a reviewer, UniCredit has its core business in Europe (mostly in western countries) and
could be differently impacted by uncertainty on European stock market, compared to US
stock market. Estimated parameters are given in Table 4 whereas the estimated function
forms in the different states are given by Figure 13. The vector of smoothing parameters
(obtained by the same CV procedure) is {2, 2, 15, 15, 2, 2}. For comparison purposes,
we reproduced the estimated parameter of the MS-GAMLSS model with the VIX. We see
that all parameters are very close one to another. In term of decoded state, we observe
the same switches as well (Figure 14). In term of AIC, the model based on VIX is slightly
better. From a statistical perspective, these results can be explained by the fact that VIX
and VSTOXX are highly correlated. Using daily prices over the period 01/2005-06/2014,
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we found a correlation coefficient of 0.958 (Figure 15), whereas using quarterly data, it is
0.952.
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Figure 13: Estimated nonparametric functional forms between the PRF and λ and between
the unemployment rate and σ (respectively, from top to bottom). Solid (resp. dotted) line:
state 1 (resp. 2).
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Figure 13: Estimated nonparametric functional forms between the VSTOXX index and γ
(respectively, from top to bottom). Solid (resp. dotted) line: state 1 (resp. 2).
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Figure 14: State probability over time, for MS-GAMLSS model with the VSTOXX index
as explanatory variable for γ. Thin solid: first state; dotted: second state.
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Final results π̂11 π̂22 β̂
(1)
0 (σ) β̂

(2)
0 (σ) β̂

(1)
0 (γ) β̂

(2)
0 (γ) β̂

(1)
0 (λ) β̂

(2)
0 (λ) -LL AIC

MS-VSTOXX 0.95 0.94 9.98 9.73 −0.94 −0.68 2.78 3.49 9624.8 19278
MS-VIX 0.95 0.93 10 9.81 −0.95 −0.70 2.8 3.47 9619.2 19272

Table 4: Estimations of the constant parameters for the MS-GAMLSS models with either
VSTOXX or VIX as explanatory variable for γ.
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Figure 15: Daily VSTOXX (blue) versus VIX (green) volatility index over the period
03/01/2005 - 30/06/2014. Correlation coefficient: 0.958.
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